In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is one-to-one with the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring.
If the given ring is commutative, a group ring is also referred to as a group algebra, for it is indeed an algebra over the given ring.
The apparatus of group rings is especially useful in the theory of group representations.
Read more about Group Ring: Definition, Two Simple Examples, Some Basic Properties, Group Algebra Over A Finite Group, Group Rings Over An Infinite Group, Representations of A Group Ring, Filtration
Famous quotes containing the words group and/or ring:
“For me, as a beginning novelist, all other living writers form a control group for whom the world is a placebo.”
—Nicholson Baker (b. 1957)
“Tell me where is fancy bred,
Or in the heart or in the head?
How begot, how nourished?
Reply, reply.
It is engendered in the eyes,
With gazing fed, and fancy dies
In the cradle where it lies.
Let us all ring fancys knell.
Ill begin it. Ding, dong, bell.”
—William Shakespeare (15641616)