In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usually denoted as such: 0, 1 or e depending on the context. If the group operation is denoted ∗ then it is defined by e ∗ e = e.
The trivial group should not be confused with the empty set (which has no elements, and lacking an identity element, cannot be a group).
Given any group G, the group consisting of only the identity element is a trivial group and being a subgroup of G is called the trivial subgroup of G.
The term, when referred to "G has no non-trivial subgroups" refers to the fact that all subgroups of G are the trivial group {e} and the group G itself.
Read more about Trivial Group: Properties
Famous quotes containing the words trivial and/or group:
“I could be content that we might procreate like trees, without conjunction, or that there were any way to perpetuate the world without this trivial and vulgar way of coition.”
—Thomas Browne (16051682)
“Unless a group of workers know their work is under surveillance, that they are being rated as fairly as human beings, with the fallibility that goes with human judgment, can rate them, and that at least an attempt is made to measure their worth to an organization in relative terms, they are likely to sink back on length of service as the sole reason for retention and promotion.”
—Mary Barnett Gilson (1877?)