In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usually denoted as such: 0, 1 or e depending on the context. If the group operation is denoted ∗ then it is defined by e ∗ e = e.
The trivial group should not be confused with the empty set (which has no elements, and lacking an identity element, cannot be a group).
Given any group G, the group consisting of only the identity element is a trivial group and being a subgroup of G is called the trivial subgroup of G.
The term, when referred to "G has no non-trivial subgroups" refers to the fact that all subgroups of G are the trivial group {e} and the group G itself.
Read more about Trivial Group: Properties
Famous quotes containing the words trivial and/or group:
“The elixir of life, the philosophers stone
is yours if you surrender
sterile logic, trivial reason.”
—Hilda Doolittle (18861961)
“The poet who speaks out of the deepest instincts of man will be heard. The poet who creates a myth beyond the power of man to realize is gagged at the peril of the group that binds him. He is the true revolutionary: he builds a new world.”
—Babette Deutsch (18951982)