Definition
Let G be a group, written multiplicatively, and let R be a ring. The group ring of G over R, which we will denote by R, is the set of mappings f : G → R of finite support, where the product of a scalar in R and a vector (or mapping) f is defined as the vector, and the sum of two vectors f and g is defined as the vector . To turn the commutative group R into a ring, we define the product of f and g to be the vector
The summation is legitimate because f and g are of finite support, and the ring axioms are readily verified.
Some variations in the notation and terminology are in use. In particular, the mappings such as f : G → R are sometimes written as what are called "formal linear combinations of elements of G, with coefficients in R":
or simply
where this doesn't cause confusion.
Read more about this topic: Group Ring
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)