Definition
Let G be a group, written multiplicatively, and let R be a ring. The group ring of G over R, which we will denote by R, is the set of mappings f : G → R of finite support, where the product of a scalar in R and a vector (or mapping) f is defined as the vector, and the sum of two vectors f and g is defined as the vector . To turn the commutative group R into a ring, we define the product of f and g to be the vector
The summation is legitimate because f and g are of finite support, and the ring axioms are readily verified.
Some variations in the notation and terminology are in use. In particular, the mappings such as f : G → R are sometimes written as what are called "formal linear combinations of elements of G, with coefficients in R":
or simply
where this doesn't cause confusion.
Read more about this topic: Group Ring
Famous quotes containing the word definition:
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)