Group Ring - Definition

Definition

Let G be a group, written multiplicatively, and let R be a ring. The group ring of G over R, which we will denote by R, is the set of mappings f : GR of finite support, where the product of a scalar in R and a vector (or mapping) f is defined as the vector, and the sum of two vectors f and g is defined as the vector . To turn the commutative group R into a ring, we define the product of f and g to be the vector

The summation is legitimate because f and g are of finite support, and the ring axioms are readily verified.

Some variations in the notation and terminology are in use. In particular, the mappings such as f : GR are sometimes written as what are called "formal linear combinations of elements of G, with coefficients in R":

or simply

where this doesn't cause confusion.

Read more about this topic:  Group Ring

Famous quotes containing the word definition:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)