Group Rings Over An Infinite Group
Much less is known in the case where G is countably infinite, or uncountable, and this is an area of active research. The case where R is the field of complex numbers is probably the one best studied. In this case, Irving Kaplansky proved that if a and b are elements of C with ab = 1, then ba = 1. Whether this is true if R is a field of positive characteristic remains unknown.
A long-standing conjecture of Kaplansky (~1940) says that if G is a torsion-free group, and K is a field, then the group ring K has no non-trivial zero divisors. This conjecture is equivalent to K having no non-trivial nilpotents under the same hypotheses for K and G.
In fact, the condition that K is a field can be relaxed to any ring that can be embedded into an integral domain.
The conjecture remains open in full generality, however some special cases of torsion-free groups have been shown to satisfy the zero divisor conjecture. These include:
- Unique product groups (which include virtually abelian groups, orderable groups, and free groups, since they are orderable)
- Elementary amenable groups
- Diffuse groups - in particular, groups that act freely isometrically on R-trees, and the fundamental groups of surface groups except for the fundamental groups of direct sums of one, two or three copies of the projective plane.
The case of G being a topological group is discussed in greater detail in the article on group algebras.
Read more about this topic: Group Ring
Famous quotes containing the words group, rings and/or infinite:
“We begin with friendships, and all our youth is a reconnoitering and recruiting of the holy fraternity they shall combine for the salvation of men. But so the remoter stars seem a nebula of united light, yet there is no group which a telescope will not resolve; and the dearest friends are separated by impassable gulfs.”
—Ralph Waldo Emerson (18031882)
“It is told that some divorcees, elated by their freedom, pause on leaving the courthouse to kiss a front pillar, or even walk to the Truckee to hurl their wedding rings into the river; but boys who recover the rings declare they are of the dime-store variety, and accuse the throwers of fraudulent practices.”
—Administration in the State of Neva, U.S. public relief program. Nevada: A Guide to the Silver State (The WPA Guide to Nevada)
“The unique eludes us; yet we remain faithful to the ideal of it; and in spite of sense and of our merely abstract thinking, it becomes for us the most real thing in the actual world, although for us it is the elusive goal of an infinite quest.”
—Josiah Royce (18551916)