Group Ring - Group Rings Over An Infinite Group

Group Rings Over An Infinite Group

Much less is known in the case where G is countably infinite, or uncountable, and this is an area of active research. The case where R is the field of complex numbers is probably the one best studied. In this case, Irving Kaplansky proved that if a and b are elements of C with ab = 1, then ba = 1. Whether this is true if R is a field of positive characteristic remains unknown.

A long-standing conjecture of Kaplansky (~1940) says that if G is a torsion-free group, and K is a field, then the group ring K has no non-trivial zero divisors. This conjecture is equivalent to K having no non-trivial nilpotents under the same hypotheses for K and G.

In fact, the condition that K is a field can be relaxed to any ring that can be embedded into an integral domain.

The conjecture remains open in full generality, however some special cases of torsion-free groups have been shown to satisfy the zero divisor conjecture. These include:

  • Unique product groups (which include virtually abelian groups, orderable groups, and free groups, since they are orderable)
  • Elementary amenable groups
  • Diffuse groups - in particular, groups that act freely isometrically on R-trees, and the fundamental groups of surface groups except for the fundamental groups of direct sums of one, two or three copies of the projective plane.

The case of G being a topological group is discussed in greater detail in the article on group algebras.

Read more about this topic:  Group Ring

Famous quotes containing the words group, rings and/or infinite:

    Once it was a boat, quite wooden
    and with no business, no salt water under it
    and in need of some paint. It was no more
    than a group of boards. But you hoisted her, rigged her.
    She’s been elected.
    Anne Sexton (1928–1974)

    If a man do not erect in this age his own tomb ere he dies, he shall live no longer in monument than the bell rings and the widow weeps.
    William Shakespeare (1564–1616)

    The unique eludes us; yet we remain faithful to the ideal of it; and in spite of sense and of our merely abstract thinking, it becomes for us the most real thing in the actual world, although for us it is the elusive goal of an infinite quest.
    Josiah Royce (1855–1916)