Group Ring - Two Simple Examples

Two Simple Examples

Let G = Z3, the cyclic group of three elements with generator a and identity element . An element r of C may be written as

where z0, z1 and z2 are in C, the complex numbers. Writing a different element s as

their sum is

and their product is

rs = (z_0w_0 + z_1w_2 + z_2w_1) 1_G
+(z_0w_1 + z_1w_0 + z_2w_2)a
+(z_0w_2 + z_2w_0 + z_1w_1)a^2.\,

Notice that the identity element of G induces a canonical embedding of the coefficient ring (in this case C) into C; however strictly speaking the multiplicative identity element of C is where the first 1 comes from C and the second from G. The additive identity element is of course zero.

When G is a non-commutative group, one must be careful to preserve the order of the group elements (and not accidentally commute them) when multiplying the terms.

A different example is that of the Laurent polynomials over a ring R: these are nothing more or less than the group ring of the infinite cyclic group Z over R.

Read more about this topic:  Group Ring

Famous quotes containing the words simple and/or examples:

    It is a curious emotion, this certain homesickness I have in mind. With Americans, it is a national trait, as native to us as the rollercoaster or the jukebox. It is no simple longing for the home town or country of our birth. The emotion is Janus-faced: we are torn between a nostalgia for the familiar and an urge for the foreign and strange. As often as not, we are homesick most for the places we have never known.
    Carson McCullers (1917–1967)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)