Group Ring - Some Basic Properties

Some Basic Properties

Assuming that the ring R has a unit element 1, and denoting the group unit by 1G, the ring R contains a subring isomorphic to R, and its group of invertible elements contains a subgroup isomorphic to G. For considering the indicator function of {1G}, which is the vector f defined by

f(g)=
1\cdot 1_G + \sum_{g\not= 1_G}0 \cdot g=
\mathbf{1}_{\{1_G\}}=\begin{cases}
1\text{ if }g = 1_G \\
0\text{ if }g \ne 1_G
\end{cases},

the set of all scalar multiples of f is a subring of R isomorphic to R. And if we map each element s of G to the indicator function of {s}, which is the vector f defined by

f(g)=
1\cdot s + \sum_{g\not= s}0 \cdot g=
\mathbf{1}_{\{s\}}=\begin{cases}
1\text{ if }g = s \\
0\text{ if }g \ne s
\end{cases}

the resulting mapping is an injective group homomorphism (with respect to multiplication, not addition, in R).

If R and G are both commutative (i.e., R is commutative and G is an abelian group), R is commutative.

If H is a subgroup of G, then R is a subring of R. Similarly, if S is a subring of R, S is a subring of R.

Read more about this topic:  Group Ring

Famous quotes containing the words basic and/or properties:

    Nothing and no one can destroy the Chinese people. They are relentless survivors. They are the oldest civilized people on earth. Their civilization passes through phases but its basic characteristics remain the same. They yield, they bend to the wind, but they never break.
    Pearl S. Buck (1892–1973)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)