Some Basic Properties
Assuming that the ring R has a unit element 1, and denoting the group unit by 1G, the ring R contains a subring isomorphic to R, and its group of invertible elements contains a subgroup isomorphic to G. For considering the indicator function of {1G}, which is the vector f defined by
the set of all scalar multiples of f is a subring of R isomorphic to R. And if we map each element s of G to the indicator function of {s}, which is the vector f defined by
the resulting mapping is an injective group homomorphism (with respect to multiplication, not addition, in R).
If R and G are both commutative (i.e., R is commutative and G is an abelian group), R is commutative.
If H is a subgroup of G, then R is a subring of R. Similarly, if S is a subring of R, S is a subring of R.
Read more about this topic: Group Ring
Famous quotes containing the words basic and/or properties:
“A kiss can be a comma, a question mark or an exclamation point. Thats basic spelling that every woman ought to know.”
—Mistinguett (18741956)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)