Representations of A Group Ring
A module M over R is then the same as a linear representation of G over the field R. There is no particular reason to limit R to be a field here. However, the classical results were obtained first when R is the complex number field and G is a finite group, so this case deserves close attention. It was shown that R is a semisimple ring, under those conditions, with profound implications for the representations of finite groups. More generally, whenever the characteristic of the field R does not divide the order of the finite group G, then R is semisimple (Maschke's theorem).
When G is a finite abelian group, the group ring is commutative, and its structure is easy to express in terms of roots of unity. When R is a field of characteristic p, and the prime number p divides the order of the finite group G, then the group ring is not semisimple: it has a non-zero Jacobson radical, and this gives the corresponding subject of modular representation theory its own, deeper character.
Read more about this topic: Group Ring
Famous quotes containing the words representations of, group and/or ring:
“Dreams are distorted representations of desire. So are dream- analyses.”
—Mason Cooley (b. 1927)
“We begin with friendships, and all our youth is a reconnoitering and recruiting of the holy fraternity they shall combine for the salvation of men. But so the remoter stars seem a nebula of united light, yet there is no group which a telescope will not resolve; and the dearest friends are separated by impassable gulfs.”
—Ralph Waldo Emerson (18031882)
“I like well the ring of your last maxim, It is only the fear of death makes us reason of impossibilities. And but for fear, death itself is an impossibility.”
—Henry David Thoreau (18171862)