In mathematics, a von Neumann algebra or W*-algebra is a *-algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. They were originally introduced by John von Neumann, motivated by his study of single operators, group representations, ergodic theory and quantum mechanics. His double commutant theorem shows that the analytic definition is equivalent to a purely algebraic definition as an algebra of symmetries.
Two basic examples of von Neumann algebras are as follows. The ring L∞(R) of essentially bounded measurable functions on the real line is a commutative von Neumann algebra, which acts by pointwise multiplication on the Hilbert space L2(R) of square integrable functions. The algebra B(H) of all bounded operators on a Hilbert space H is a von Neumann algebra, non-commutative if the Hilbert space has dimension at least 2.
Von Neumann algebras were first studied by von Neumann (1929); he and Francis Murray developed the basic theory, under the original name of rings of operators, in a series of papers written in the 1930s and 1940s (F.J. Murray & J. von Neumann 1936, 1937, 1943; J. von Neumann 1938, 1940, 1943, 1949), reprinted in the collected works of von Neumann (1961).
Introductory accounts of von Neumann algebras are given in the online notes of Jones (2003) and Wassermann (1991) and the books by Dixmier (1981), Schwartz (1967), Blackadar (2005) and Sakai (1971). The three volume work by Takesaki (1979) gives an encyclopedic account of the theory. The book by Connes (1994) discusses more advanced topics.
Read more about Von Neumann Algebra: Definitions, Terminology, Commutative Von Neumann Algebras, Projections, Factors, The Predual, Weights, States, and Traces, Modules Over A Factor, Amenable Von Neumann Algebras, Tensor Products of Von Neumann Algebras, Bimodules and Subfactors, Non-amenable Factors, Examples, Applications
Famous quotes containing the words von, neumann and/or algebra:
“If we are out of synch with ourselves, everything is out of synch for us.”
—Johann Wolfgang Von Goethe (17491832)
“It means there are times when a mere scientist has gone as far as he can. When he must pause and observe respectfully while something infinitely greater assumes control.”
—Kurt Neumann (19061958)
“Poetry has become the higher algebra of metaphors.”
—José Ortega Y Gasset (18831955)