Modules Over A Factor
Given an abstract separable factor, one can ask for a classification of its modules, meaning the separable Hilbert spaces that it acts on. The answer is given as follows: every such module H can be given an M-dimension dimM(H) (not its dimension as a complex vector space) such that modules are isomorphic if and only if they have the same M-dimension. The M-dimension is additive, and a module is isomorphic to a subspace of another module if and only if it has smaller or equal M-dimension.
A module is called standard if it has a cyclic separating vector. Each factor has a standard representation, which is unique up to isomorphism. The standard representation has an antilinear involution J such that JMJ = M′. For finite factors the standard module is given by the GNS construction applied to the unique normal tracial state and the M-dimension is normalized so that the standard module has M-dimension 1, while for infinite factors the standard module is the module with M-dimension equal to ∞.
The possible M-dimensions of modules are given as follows:
- Type In (n finite): The M-dimension can be any of 0/n, 1/n, 2/n, 3/n, ..., ∞. The standard module has M-dimension 1 (and complex dimension n2.)
- Type I∞ The M-dimension can be any of 0, 1, 2, 3, ..., ∞. The standard representation of B(H) is H⊗H; its M-dimension is ∞.
- Type II1: The M-dimension can be anything in . It is normalized so that the standard module has M-dimension 1. The M-dimension is also called the coupling constant of the module H.
- Type II∞: The M-dimension can be anything in . There is in general no canonical way to normalize it; the factor may have outer automorphisms multiplying the M-dimension by constants. The standard representation is the one with M-dimension ∞.
- Type III: The M-dimension can be 0 or ∞. Any two non-zero modules are isomorphic, and all non-zero modules are standard.
Read more about this topic: Von Neumann Algebra
Famous quotes containing the word factor:
“It is change, continuing change, inevitable change, that is the dominant factor in society today. No sensible decision can be made any longer without taking into account not only the world as it is, but the world as it will be.... This, in turn, means that our statesmen, our businessmen, our everyman must take on a science fictional way of thinking.”
—Isaac Asimov (19201992)