Operators E in a von Neumann algebra for which E = EE = E* are called projections; they are exactly the operators which give an orthogonal projection of H onto some closed subspace. A subspace of the Hilbert space H is said to belong to the von Neumann algebra M if it is the image of some projection in M. Informally these are the closed subspaces that can be described using elements of M, or that M "knows" about. The closure of the image of any operator in M, or the kernel of any operator in M belong to M, and the closure of the image of any subspace belonging to M under an operator of M also belongs to M. There is a 1:1 correspondence between projections of M and subspaces that belong to it.
The basic theory of projections was worked out by Murray & von Neumann (1936). Two subspaces belonging to M are called (Murray-von Neumann) equivalent if there is a partial isometry mapping the first isomorphically onto the other that is an element of the von Neumann algebra (informally, if M "knows" that the subspaces are isomorphic). This induces a natural equivalence relation on projections by defining E to be equivalent to F if the corresponding subspaces are equivalent, or in other words if there is a partial isometry of H that maps the image of E isometrically to the image of F and is an element of the von Neumann algebra. Another way of stating this is that E is equivalent to F if E=uu* and F=u*u for some partial isometry u in M.
The equivalence relation ~ thus defined is additive in the following sense: Suppose E1 ~ F1 and E2 ~ F2. If E1 ⊥ E2 and F1 ⊥ F2, then E1 + E2 ~ F1 + F2. This is not true in general if one requires unitary equivalence in the definition of ~, i.e. if we say E is equivalent to F if u*Eu = F for some unitary u. .
The subspaces belonging to M are partially ordered by inclusion, and this induces a partial order ≤ of projections. There is also a natural partial order on the set of equivalence classes of projections, induced by the partial order ≤ of projections. If M is a factor, ≤ is a total order on equivalence classes of projections, described in the section on traces below.
A projection (or subspace belonging to M) E is said to be finite if there is no projection F < E that is equivalent to E. For example, all finite-dimensional projections (or subspaces) are finite (since isometries between Hilbert spaces leave the dimension fixed), but the identity operator on an infinite-dimensional Hilbert space is not finite in the von Neumann algebra of all bounded operators on it, since it is isometrically isomorphic to a proper subset of itself. However it is possible for infinite dimensional subspaces to be finite.
Orthogonal projections are noncommutative analogues of indicator functions in L∞(R). L∞(R) is the ||·||∞-closure of the subspace generated by the indicator functions. Similarly, a von Neumann algebra is generated by its projections; this is a consequence of the spectral theorem for self-adjoint operators.
The projections of a finite factor form a continuous geometry.
Read more about this topic: Von Neumann Algebra
Famous quotes containing the word projections:
“Predictions of the future are never anything but projections of present automatic processes and procedures, that is, of occurrences that are likely to come to pass if men do not act and if nothing unexpected happens; every action, for better or worse, and every accident necessarily destroys the whole pattern in whose frame the prediction moves and where it finds its evidence.”
—Hannah Arendt (19061975)
“Western man represents himself, on the political or psychological stage, in a spectacular world-theater. Our personality is innately cinematic, light-charged projections flickering on the screen of Western consciousness.”
—Camille Paglia (b. 1947)