Von Neumann Algebra - The Predual

The Predual

Any von Neumann algebra M has a predual M*, which is the Banach space of all ultraweakly continuous linear functionals on M. As the name suggests, M is (as a Banach space) the dual of its predual. The predual is unique in the sense that any other Banach space whose dual is M is canonically isomorphic to M*. Sakai (1971) showed that the existence of a predual characterizes von Neumann algebras among C* algebras.

The definition of the predual given above seems to depend on the choice of Hilbert space that M acts on, as this determines the ultraweak topology. However the predual can also be defined without using the Hilbert space that M acts on, by defining it to be the space generated by all positive normal linear functionals on M. (Here "normal" means that it preserves suprema when applied to increasing nets of self adjoint operators; or equivalently to increasing sequences of projections.)

The predual M* is a closed subspace of the dual M* (which consists of all norm-continuous linear functionals on M) but is generally smaller. The proof that M* is (usually) not the same as M* is nonconstructive and uses the axiom of choice in an essential way; it is very hard to exhibit explicit elements of M* that are not in M*. For example, exotic positive linear forms on the von Neumann algebra l∞ (Z) are given by free ultrafilters; they correspond to exotic *-homomorphisms into C and describe the Stone–Čech compactification of Z.

Examples:

  1. The predual of the von Neumann algebra L∞(R) of essentially bounded functions on R is the Banach space L1(R) of integrable functions. The dual of L∞(R) is strictly larger than L1(R) For example, a functional on L∞(R) that extends the Dirac measure δ0 on the closed subspace of bounded continuous functions C0b(R) cannot be represented as a function in L1(R).
  2. The predual of the von Neumann algebra B(H) of bounded operators on a Hilbert space H is the Banach space of all trace class operators with the trace norm ||A||= Tr(|A|). The Banach space of trace class operators is itself the dual of the C*-algebra of compact operators (which is not a von Neumann algebra).

Read more about this topic:  Von Neumann Algebra