Von Neumann Algebra - Commutative Von Neumann Algebras

Commutative Von Neumann Algebras

The relationship between commutative von Neumann algebras and measure spaces is analogous to that between commutative C*-algebras and locally compact Hausdorff spaces. Every commutative von Neumann algebra is isomorphic to L∞(X) for some measure space (X, μ) and conversely, for every σ-finite measure space X, the * algebra L∞(X) is a von Neumann algebra.

Due to this analogy, the theory of von Neumann algebras has been called noncommutative measure theory, while the theory of C*-algebras is sometimes called noncommutative topology (Connes 1994).

Read more about this topic:  Von Neumann Algebra

Famous quotes containing the words von and/or neumann:

    The older I get the more I trust in the law according to which the rose and the lily bloom.
    —Johann Wolfgang Von Goethe (1749–1832)

    What a lesson here for our world. One blast, thousands of years of civilization wiped out.
    —Kurt Neumann (1906–1958)