Von Neumann Algebra - Definitions

Definitions

There are three common ways to define von Neumann algebras.

The first and most common way is to define them as weakly closed *-algebras of bounded operators (on a Hilbert space) containing the identity. In this definition the weak (operator) topology can be replaced by many other common topologies including the strong, ultrastrong or ultraweak operator topologies. The *-algebras of bounded operators that are closed in the norm topology are C*-algebras, so in particular any von Neumann algebra is a C*-algebra.

The second definition is that a von Neumann algebra is a subset of the bounded operators closed under * and equal to its double commutant, or equivalently the commutant of some subset closed under *. The von Neumann double commutant theorem (von Neumann 1929) says that the first two definitions are equivalent.

The first two definitions describe a von Neumann algebras concretely as a set of operators acting on some given Hilbert space. Sakai (1971) showed that von Neumann algebras can also be defined abstractly as C*-algebras that have a predual; in other words the von Neumann algebra, considered as a Banach space, is the dual of some other Banach space called the predual. The predual of a von Neumann algebra is in fact unique up to isomorphism. Some authors use "von Neumann algebra" for the algebras together with a Hilbert space action, and "W*-algebra" for the abstract concept, so a von Neumann algebra is a W*-algebra together with a Hilbert space and a suitable faithful unital action on the Hilbert space. The concrete and abstract definitions of a von Neumann algebra are similar to the concrete and abstract definitions of a C*-algebra, which can be defined either as norm-closed * algebras of operators on a Hilbert space, or as Banach *-algebras such that ||a a*||=||a|| ||a*||.

Read more about this topic:  Von Neumann Algebra

Famous quotes containing the word definitions:

    What I do not like about our definitions of genius is that there is in them nothing of the day of judgment, nothing of resounding through eternity and nothing of the footsteps of the Almighty.
    —G.C. (Georg Christoph)

    Lord Byron is an exceedingly interesting person, and as such is it not to be regretted that he is a slave to the vilest and most vulgar prejudices, and as mad as the winds?
    There have been many definitions of beauty in art. What is it? Beauty is what the untrained eyes consider abominable.
    Edmond De Goncourt (1822–1896)