In mathematics, a Lie group ( /ˈliː/) is a group which is also a differentiable manifold, with the property that the group operations are compatible with the smooth structure. Lie groups are named after Sophus Lie, who laid the foundations of the theory of continuous transformation groups.
Lie groups represent the best-developed theory of continuous symmetry of mathematical objects and structures, which makes them indispensable tools for many parts of contemporary mathematics, as well as for modern theoretical physics. They provide a natural framework for analysing the continuous symmetries of differential equations (differential Galois theory), in much the same way as permutation groups are used in Galois theory for analysing the discrete symmetries of algebraic equations. An extension of Galois theory to the case of continuous symmetry groups was one of Lie's principal motivations.
Read more about Lie Group: Overview, Definitions and Examples, More Examples of Lie Groups, Early History, The Concept of A Lie Group, and Possibilities of Classification, Properties, Types of Lie Groups and Structure Theory, The Lie Algebra Associated With A Lie Group, Homomorphisms and Isomorphisms, The Exponential Map, Infinite Dimensional Lie Groups
Famous quotes containing the words lie and/or group:
“True Civilization does not lie in gas, nor in steam, nor in turn-tables. It lies in the reduction of the traces of original sin.”
—Charles Baudelaire (18211867)
“He hung out of the window a long while looking up and down the street. The worlds second metropolis. In the brick houses and the dingy lamplight and the voices of a group of boys kidding and quarreling on the steps of a house opposite, in the regular firm tread of a policeman, he felt a marching like soldiers, like a sidewheeler going up the Hudson under the Palisades, like an election parade, through long streets towards something tall white full of colonnades and stately. Metropolis.”
—John Dos Passos (18961970)