Lie Group - The Lie Algebra Associated With A Lie Group

The Lie Algebra Associated With A Lie Group

To every Lie group, we can associate a Lie algebra, whose underlying vector space is the tangent space of G at the identity element, which completely captures the local structure of the group. Informally we can think of elements of the Lie algebra as elements of the group that are "infinitesimally close" to the identity, and the Lie bracket is something to do with the commutator of two such infinitesimal elements. Before giving the abstract definition we give a few examples:

  • The Lie algebra of the vector space Rn is just Rn with the Lie bracket given by
    = 0.
    (In general the Lie bracket of a connected Lie group is always 0 if and only if the Lie group is abelian.)
  • The Lie algebra of the general linear group GLn(R) of invertible matrices is the vector space Mn(R) of square matrices with the Lie bracket given by
    = ABBA.
    If G is a closed subgroup of GLn(R) then the Lie algebra of G can be thought of informally as the matrices m of Mn(R) such that 1 + εm is in G, where ε is an infinitesimal positive number with ε2 = 0 (of course, no such real number ε exists). For example, the orthogonal group On(R) consists of matrices A with AAT = 1, so the Lie algebra consists of the matrices m with (1 + εm)(1 + εm)T = 1, which is equivalent to m + mT = 0 because ε2 = 0.
  • Formally, when working over the reals, as here, this is accomplished by considering the limit as ε → 0; but the "infinitesimal" language generalizes directly to Lie groups over general rings.

The concrete definition given above is easy to work with, but has some minor problems: to use it we first need to represent a Lie group as a group of matrices, but not all Lie groups can be represented in this way, and it is not obvious that the Lie algebra is independent of the representation we use. To get round these problems we give the general definition of the Lie algebra of a Lie group (in 4 steps):

  1. Vector fields on any smooth manifold M can be thought of as derivations X of the ring of smooth functions on the manifold, and therefore form a Lie algebra under the Lie bracket = XYYX, because the Lie bracket of any two derivations is a derivation.
  2. If G is any group acting smoothly on the manifold M, then it acts on the vector fields, and the vector space of vector fields fixed by the group is closed under the Lie bracket and therefore also forms a Lie algebra.
  3. We apply this construction to the case when the manifold M is the underlying space of a Lie group G, with G acting on G = M by left translations Lg(h) = gh. This shows that the space of left invariant vector fields (vector fields satisfying Lg*Xh = Xgh for every h in G, where Lg* denotes the differential of Lg) on a Lie group is a Lie algebra under the Lie bracket of vector fields.
  4. Any tangent vector at the identity of a Lie group can be extended to a left invariant vector field by left translating the tangent vector to other points of the manifold. Specifically, the left invariant extension of an element v of the tangent space at the identity is the vector field defined by v^g = Lg*v. This identifies the tangent space Te at the identity with the space of left invariant vector fields, and therefore makes the tangent space at the identity into a Lie algebra, called the Lie algebra of G, usually denoted by a Fraktur Thus the Lie bracket on is given explicitly by = e.

This Lie algebra is finite-dimensional and it has the same dimension as the manifold G. The Lie algebra of G determines G up to "local isomorphism", where two Lie groups are called locally isomorphic if they look the same near the identity element. Problems about Lie groups are often solved by first solving the corresponding problem for the Lie algebras, and the result for groups then usually follows easily. For example, simple Lie groups are usually classified by first classifying the corresponding Lie algebras.

We could also define a Lie algebra structure on Te using right invariant vector fields instead of left invariant vector fields. This leads to the same Lie algebra, because the inverse map on G can be used to identify left invariant vector fields with right invariant vector fields, and acts as −1 on the tangent space Te.

The Lie algebra structure on Te can also be described as follows: the commutator operation

(x, y) → xyx−1y−1

on G × G sends (e, e) to e, so its derivative yields a bilinear operation on TeG. This bilinear operation is actually the zero map, but the second derivative, under the proper identification of tangent spaces, yields an operation that satisfies the axioms of a Lie bracket, and it is equal to twice the one defined through left-invariant vector fields.

Read more about this topic:  Lie Group

Famous quotes containing the words lie, algebra and/or group:

    Two are better than one; because they have a good reward for their labour. For if they fall, the one will lift up his fellow: but woe to him that is alone when he falleth; for he hath not another to help him up. Again, if two lie together, then they have heat: but how can one be warm alone? And if one prevail against him, two shall withstand him; and a threefold cord is not quickly broken.
    Bible: Hebrew Ecclesiastes 4:9-12.

    Poetry has become the higher algebra of metaphors.
    José Ortega Y Gasset (1883–1955)

    The conflict between the need to belong to a group and the need to be seen as unique and individual is the dominant struggle of adolescence.
    Jeanne Elium (20th century)