In mathematics, a maximal compact subgroup K of a topological group G is a subgroup K that is a compact space, in the subspace topology, and maximal amongst such subgroups.
Maximal compact subgroups play an important role in the classification of Lie groups and especially semi-simple Lie groups. Maximal compact subgroups of Lie groups are not in general unique, but are unique up to conjugation – they are essentially unique.
Read more about Maximal Compact Subgroup: Example, Definition
Famous quotes containing the word compact:
“... in a history of spiritual rupture, a social compact built on fantasy and collective secrets, poetry becomes more necessary than ever: it keeps the underground aquifers flowing; it is the liquid voice that can wear through stone.”
—Adrienne Rich (b. 1929)
Related Phrases
Related Words