The Concept of A Lie Group, and Possibilities of Classification
Lie groups may be thought of as smoothly varying families of symmetries. Examples of symmetries include rotation about an axis. What must be understood is the nature of 'small' transformations, e.g., rotations through tiny angles, that link nearby transformations. The mathematical object capturing this structure is called a Lie algebra (Lie himself called them "infinitesimal groups"). It can be defined because Lie groups are manifolds, so have tangent spaces at each point.
The Lie algebra of any compact Lie group (very roughly: one for which the symmetries form a bounded set) can be decomposed as a direct sum of an abelian Lie algebra and some number of simple ones. The structure of an abelian Lie algebra is mathematically uninteresting (since the Lie bracket is identically zero); the interest is in the simple summands. Hence the question arises: what are the simple Lie algebras of compact groups? It turns out that they mostly fall into four infinite families, the "classical Lie algebras" An, Bn, Cn and Dn, which have simple descriptions in terms of symmetries of Euclidean space. But there are also just five "exceptional Lie algebras" that do not fall into any of these families. E8 is the largest of these.
Read more about this topic: Lie Group
Famous quotes containing the words concept and/or lie:
“One concept corrupts and confuses the others. I am not speaking of the Evil whose limited sphere is ethics; I am speaking of the infinite.”
—Jorge Luis Borges (18991986)
“I askèd a thief to steal me a peach
He turned up his eyes
I askd a lithe lady to lie her down
Holy & meek she cries
As soon as I went
An angel came.
He winkd at the thief
And smild at the dame
And without one word said
Had a peach from the tree
And still as a maid
Enjoyd the lady.”
—William Blake (17571827)