Adjoint Representation Of A Lie Group
In mathematics, the adjoint representation (or adjoint action) of a Lie group G is the natural representation of G on its own Lie algebra. This representation is the linearized version of the action of G on itself by conjugation.
Read more about Adjoint Representation Of A Lie Group: Formal Definition, Examples, Properties, Roots of A Semisimple Lie Group, Variants and Analogues
Famous quotes containing the words lie and/or group:
“Summoning a childs voice from a webfoot stone,
Never never oh never to regret the bugle I wore
On my cleaving arm as I blasted in a wave.
Now shown and mostly bare I would lie down,
Lie down, like down and live
As quiet as a bone.”
—Dylan Thomas (19141953)
“Now, honestly: if a large group of ... demonstrators blocked the entrances to St. Patricks Cathedral every Sunday for years, making it impossible for worshipers to get inside the church without someone escorting them through screaming crowds, wouldnt some judge rule that those protesters could keep protesting, but behind police lines and out of the doorways?”
—Anna Quindlen (b. 1953)