Ideal Class Group

Ideal Class Group

In mathematics, the extent to which unique factorization fails in the ring of integers of an algebraic number field (or more generally any Dedekind domain) can be described by a certain group known as an ideal class group (or class group). If this group is finite (as it is in the case of the ring of integers of a number field), then the order of the group is called the class number. The multiplicative theory of a Dedekind domain is intimately tied to the structure of its class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain.

Read more about Ideal Class Group:  History and Origin of The Ideal Class Group, Definition, Properties, Relation With The Group of Units, Examples of Ideal Class Groups, Connections To Class Field Theory

Famous quotes containing the words ideal, class and/or group:

    The Ideal Man should talk to us as if we were goddesses, and treat us as if we were children. He should refuse all our serious requests, and gratify every one of our whims. He should encourage us to have caprices, and forbid us to have missions. He should always say much more than he means, and always mean much more than he says.
    Oscar Wilde (1854–1900)

    The General Strike has taught the working class more in four days than years of talking could have done.
    —A.J. (Arthur James)

    The poet who speaks out of the deepest instincts of man will be heard. The poet who creates a myth beyond the power of man to realize is gagged at the peril of the group that binds him. He is the true revolutionary: he builds a new world.
    Babette Deutsch (1895–1982)