Ideal Class Group
In mathematics, the extent to which unique factorization fails in the ring of integers of an algebraic number field (or more generally any Dedekind domain) can be described by a certain group known as an ideal class group (or class group). If this group is finite (as it is in the case of the ring of integers of a number field), then the order of the group is called the class number. The multiplicative theory of a Dedekind domain is intimately tied to the structure of its class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain.
Read more about Ideal Class Group: History and Origin of The Ideal Class Group, Definition, Properties, Relation With The Group of Units, Examples of Ideal Class Groups, Connections To Class Field Theory
Famous quotes containing the words ideal, class and/or group:
“The unique eludes us; yet we remain faithful to the ideal of it; and in spite of sense and of our merely abstract thinking, it becomes for us the most real thing in the actual world, although for us it is the elusive goal of an infinite quest.”
—Josiah Royce (18551916)
“By bourgeoisie is meant the class of modern capitalists, owners of the means of social production and employers of wage labor. By proletariat, the class of modern wage laborers who, having no means of production of their own, are reduced to selling their labor power in order to live.”
—Friedrich Engels (18201895)
“Stripped of ethical rationalizations and philosophical pretensions, a crime is anything that a group in power chooses to prohibit.”
—Freda Adler (b. 1934)