Ideal Class Group

Ideal Class Group

In mathematics, the extent to which unique factorization fails in the ring of integers of an algebraic number field (or more generally any Dedekind domain) can be described by a certain group known as an ideal class group (or class group). If this group is finite (as it is in the case of the ring of integers of a number field), then the order of the group is called the class number. The multiplicative theory of a Dedekind domain is intimately tied to the structure of its class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain.

Read more about Ideal Class Group:  History and Origin of The Ideal Class Group, Definition, Properties, Relation With The Group of Units, Examples of Ideal Class Groups, Connections To Class Field Theory

Famous quotes containing the words ideal, class and/or group:

    An ideal is merely the projection, on an enormously enlarged scale, of some aspect of personality.
    Aldous Huxley (1894–1963)

    Class is rarely talked about in the United States; nowhere is there a more intense silence about the reality of class differences than in educational settings.
    bell hooks (b. c. 1955)

    We often overestimate the influence of a peer group on our teenager. While the peer group is most influential in matters of taste and preference, we parents are most influential in more abiding matters of standards, beliefs, and values.
    David Elkind (20th century)