Ideal Class Group

Ideal Class Group

In mathematics, the extent to which unique factorization fails in the ring of integers of an algebraic number field (or more generally any Dedekind domain) can be described by a certain group known as an ideal class group (or class group). If this group is finite (as it is in the case of the ring of integers of a number field), then the order of the group is called the class number. The multiplicative theory of a Dedekind domain is intimately tied to the structure of its class group. For example, the class group of a Dedekind domain is trivial if and only if the ring is a unique factorization domain.

Read more about Ideal Class Group:  History and Origin of The Ideal Class Group, Definition, Properties, Relation With The Group of Units, Examples of Ideal Class Groups, Connections To Class Field Theory

Famous quotes containing the words ideal, class and/or group:

    Our ideal ... must be a language as clear as glass—the person looking out of the window knows there is glass there, but he is not concerned with it; what concerns him is what comes through from the other side.
    Elizabeth Bowen (1899–1973)

    I know no East or West, North or South, when it comes to my class fighting the battle for justice. If it is my fortune to live to see the industrial chain broken from every workingman’s child in America, and if then there is one black child in Africa in bondage, there shall I go.
    Mother Jones (1830–1930)

    He hung out of the window a long while looking up and down the street. The world’s second metropolis. In the brick houses and the dingy lamplight and the voices of a group of boys kidding and quarreling on the steps of a house opposite, in the regular firm tread of a policeman, he felt a marching like soldiers, like a sidewheeler going up the Hudson under the Palisades, like an election parade, through long streets towards something tall white full of colonnades and stately. Metropolis.
    John Dos Passos (1896–1970)