History and Origin of The Ideal Class Group
Ideal class groups (or, rather, what were effectively ideal class groups) were studied some time before the idea of an ideal was formulated. These groups appeared in the theory of quadratic forms: in the case of binary integral quadratic forms, as put into something like a final form by Gauss, a composition law was defined on certain equivalence classes of forms. This gave a finite abelian group, as was recognised at the time.
Later Kummer was working towards a theory of cyclotomic fields. It had been realised (probably by several people) that failure to complete proofs in the general case of Fermat's last theorem by factorisation using the roots of unity was for a very good reason: a failure of the fundamental theorem of arithmetic to hold in the rings generated by those roots of unity was a major obstacle. Out of Kummer's work for the first time came a study of the obstruction to the factorisation. We now recognise this as part of the ideal class group: in fact Kummer had isolated the p-torsion in that group for the field of p-roots of unity, for any prime number p, as the reason for the failure of the standard method of attack on the Fermat problem (see regular prime).
Somewhat later again Dedekind formulated the concept of ideal, Kummer having worked in a different way. At this point the existing examples could be unified. It was shown that while rings of algebraic integers do not always have unique factorization into primes (because they need not be principal ideal domains), they do have the property that every proper ideal admits a unique factorization as a product of prime ideals (that is, every ring of algebraic integers is a Dedekind domain). The size of the ideal class group can be considered as a measure for the deviation of a ring from being a principal domain; a ring is a principal domain if and only if it has a trivial ideal class group.
Read more about this topic: Ideal Class Group
Famous quotes containing the words history and, history, origin, ideal, class and/or group:
“We dont know when our name came into being or how some distant ancestor acquired it. We dont understand our name at all, we dont know its history and yet we bear it with exalted fidelity, we merge with it, we like it, we are ridiculously proud of it as if we had thought it up ourselves in a moment of brilliant inspiration.”
—Milan Kundera (b. 1929)
“The history of our era is the nauseating and repulsive history of the crucifixion of the procreative body for the glorification of the spirit.”
—D.H. (David Herbert)
“There are certain books in the world which every searcher for truth must know: the Bible, the Critique of Pure Reason, the Origin of Species, and Karl Marxs Capital.”
—W.E.B. (William Edward Burghardt)
“There is no absolute point of view from which real and ideal can be finally separated and labelled.”
—T.S. (Thomas Stearns)
“Indeed, there are no easy correlations between parental ideology, class or race and successful child development. Many children the world over have revealed a kind of toughness and plasticity that make the determined efforts of some parents to spare their children the slightest pain seem ironic.”
—Robert Coles (20th century)
“I cant think of a single supposedly Black issue that hasnt wasted the original Black target group and then spread like the measles to outlying white experience.”
—June Jordan (b. 1936)