Definition
If R is an integral domain, define a relation ~ on nonzero fractional ideals of R by I ~ J whenever there exist nonzero elements a and b of R such that (a)I = (b)J. (Here the notation (a) means the principal ideal of R consisting of all the multiples of a.) It is easily shown that this is an equivalence relation. The equivalence classes are called the ideal classes of R. Ideal classes can be multiplied: if denotes the equivalence class of the ideal I, then the multiplication = is well-defined and commutative. The principal ideals form the ideal class which serves as an identity element for this multiplication. Thus a class has an inverse if and only if there is an ideal J such that IJ is a principal ideal. In general, such a J may not exist and consequently the set of ideal classes of R may only be a monoid.
However, if R is the ring of algebraic integers in an algebraic number field, or more generally a Dedekind domain, the multiplication defined above turns the set of fractional ideal classes into an abelian group, the ideal class group of R. The group property of existence of inverse elements follows easily from the fact that, in a Dedekind domain, every non-zero ideal (except R) is a product of prime ideals.
Read more about this topic: Ideal Class Group
Famous quotes containing the word definition:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)