Definition
If R is an integral domain, define a relation ~ on nonzero fractional ideals of R by I ~ J whenever there exist nonzero elements a and b of R such that (a)I = (b)J. (Here the notation (a) means the principal ideal of R consisting of all the multiples of a.) It is easily shown that this is an equivalence relation. The equivalence classes are called the ideal classes of R. Ideal classes can be multiplied: if denotes the equivalence class of the ideal I, then the multiplication = is well-defined and commutative. The principal ideals form the ideal class which serves as an identity element for this multiplication. Thus a class has an inverse if and only if there is an ideal J such that IJ is a principal ideal. In general, such a J may not exist and consequently the set of ideal classes of R may only be a monoid.
However, if R is the ring of algebraic integers in an algebraic number field, or more generally a Dedekind domain, the multiplication defined above turns the set of fractional ideal classes into an abelian group, the ideal class group of R. The group property of existence of inverse elements follows easily from the fact that, in a Dedekind domain, every non-zero ideal (except R) is a product of prime ideals.
Read more about this topic: Ideal Class Group
Famous quotes containing the word definition:
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)