Properties
The ideal class group is trivial (i.e. has only one element) if and only if all ideals of R are principal. In this sense, the ideal class group measures how far R is from being a principal ideal domain, and hence from satisfying unique prime factorization (Dedekind domains are unique factorization domains if and only if they are principal ideal domains).
The number of ideal classes (the class number of R) may be infinite in general. In fact, every abelian group is isomorphic to the ideal class group of some Dedekind domain. But if R is in fact a ring of algebraic integers, then the class number is always finite. This is one of the main results of classical algebraic number theory.
Computation of the class group is hard, in general; it can be done by hand for the ring of integers in an algebraic number field of small discriminant, using Minkowski's bound. This result gives a bound, depending on the ring, such that every ideal class contains an ideal norm less than the bound. In general the bound is not sharp enough to make the calculation practical for fields with large discriminant, but computers are well suited to the task.
The mapping from rings of integers R to their corresponding class groups is functorial, and the class group can be subsumed under the heading of algebraic K-theory, with K0(R) being the functor assigning to R its ideal class group; more precisely, K0(R) = Z×C(R), where C(R) is the class group. Higher K groups can also be employed and interpreted arithmetically in connection to rings of integers.
Read more about this topic: Ideal Class Group
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)