Ideal Class Group - Connections To Class Field Theory

Connections To Class Field Theory

Class field theory is a branch of algebraic number theory which seeks to classify all the abelian extensions of a given algebraic number field, meaning Galois extensions with abelian Galois group. A particularly beautiful example is found in the Hilbert class field of a number field, which can be defined as the maximal unramified abelian extension of such a field. The Hilbert class field L of a number field K is unique and has the following properties:

  • Every ideal of the ring of integers of K becomes principal in L, i.e., if I is an integral ideal of K then the image of I is a principal ideal in L.
  • L is a Galois extension of K with Galois group isomorphic to the ideal class group of K.

Neither property is particularly easy to prove.

Read more about this topic:  Ideal Class Group

Famous quotes containing the words connections, class, field and/or theory:

    Growing up human is uniquely a matter of social relations rather than biology. What we learn from connections within the family takes the place of instincts that program the behavior of animals; which raises the question, how good are these connections?
    Elizabeth Janeway (b. 1913)

    I never feel so conscious of my race as I do when I stand before a class of twenty-five young men and women eager to learn about what it is to be black in America.
    Claire Oberon Garcia, African American college professor. As quoted in the Chronicle of Higher Education, p. B3 (July 27, 1994)

    There is a call to life a little sterner,
    And braver for the earner, learner, yearner.
    Less criticism of the field and court
    And more preoccupation with the sport.
    Robert Frost (1874–1963)

    ... liberal intellectuals ... tend to have a classical theory of politics, in which the state has a monopoly of power; hoping that those in positions of authority may prove to be enlightened men, wielding power justly, they are natural, if cautious, allies of the “establishment.”
    Susan Sontag (b. 1933)