Connected Space
Connected and disconnected subspaces of R²
The green space A at top is simply connected whereas the blue space B below is not connected. The pink space C at top and the orange space D are both connected; C is also simply connected while D is not.In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint nonempty open subsets. Connectedness is one of the principal topological properties that is used to distinguish topological spaces. A stronger notion is that of a path-connected space, which is a space where any two points can be joined by a path.
A subset of a topological space X is a connected set if it is a connected space when viewed as a subspace of X.
As an example of a space that is not connected, one can delete an infinite line from the plane. Other examples of disconnected spaces (that is, spaces which are not connected) include the plane with a closed annulus removed, as well as the union of two disjoint open disks in two-dimensional Euclidean space.
Read more about Connected Space: Formal Definition, Examples, Path Connectedness, Arc Connectedness, Local Connectedness, Theorems, Graphs, Stronger Forms of Connectedness
Famous quotes containing the words connected and/or space:
“We cant nourish our children if we dont nourish ourselves.... Parents who manage to stay married, sane, and connected to each other share one basic characteristic: The ability to protect even small amounts of time together no matter what else is going on in their lives.”
—Ron Taffel (20th century)
“Here were poor streets where faded gentility essayed with scanty space and shipwrecked means to make its last feeble stand, but tax-gatherer and creditor came there as elsewhere, and the poverty that yet faintly struggled was hardly less squalid and manifest than that which had long ago submitted and given up the game.”
—Charles Dickens (18121870)