Simply Connected Space

Simply Connected Space

In topology, a topological space is called simply connected (or 1-connected) if it is path-connected and every path between two points can be continuously transformed, staying within the space, into any other path while preserving the two endpoints in question (see below for an informal discussion).

If a space is not simply connected, it is convenient to measure the extent to which it fails to be simply connected; this is done by the fundamental group. Intuitively, the fundamental group measures how the holes behave on a space; if there are no holes, the fundamental group is trivial — equivalently, the space is simply connected.

Read more about Simply Connected Space:  Informal Discussion, Formal Definition and Equivalent Formulations, Examples, Properties

Famous quotes containing the words simply, connected and/or space:

    The proper method of philosophy consists in clearly conceiving the insoluble problems in all their insolubility and then in simply contemplating them, fixedly and tirelessly, year after year, without any hope, patiently waiting.
    Simone Weil (1909–1943)

    Nothing fortuitous happens in a child’s world. There are no accidents. Everything is connected with everything else and everything can be explained by everything else.... For a young child everything that happens is a necessity.
    John Berger (b. 1926)

    But alas! I never could keep a promise. I do not blame myself for this weakness, because the fault must lie in my physical organization. It is likely that such a very liberal amount of space was given to the organ which enables me to make promises, that the organ which should enable me to keep them was crowded out. But I grieve not. I like no half-way things. I had rather have one faculty nobly developed than two faculties of mere ordinary capacity.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)