Local Connectedness
A topological space is said to be locally connected at a point x if every neighbourhood of x contains a connected open neighbourhood. It is locally connected if it has a base of connected sets. It can be shown that a space X is locally connected if and only if every component of every open set of X is open. The topologist's sine curve is an example of a connected space that is not locally connected.
Similarly, a topological space is said to be locally path-connected if it has a base of path-connected sets. An open subset of a locally path-connected space is connected if and only if it is path-connected. This generalizes the earlier statement about Rn and Cn, each of which is locally path-connected. More generally, any topological manifold is locally path-connected.
Read more about this topic: Connected Space
Famous quotes containing the word local:
“These native villages are as unchanging as the woman in one of their stories. When she was called before a local justice he asked her age. I have 45 years. But, said the justice, you were forty-five when you appeared before me two years ago. SeƱor Judge, she replied proudly, drawing herself to her full height, I am not of those who are one thing today and another tomorrow!”
—State of New Mexico, U.S. public relief program (1935-1943)