Connected Space - Local Connectedness

Local Connectedness

A topological space is said to be locally connected at a point x if every neighbourhood of x contains a connected open neighbourhood. It is locally connected if it has a base of connected sets. It can be shown that a space X is locally connected if and only if every component of every open set of X is open. The topologist's sine curve is an example of a connected space that is not locally connected.

Similarly, a topological space is said to be locally path-connected if it has a base of path-connected sets. An open subset of a locally path-connected space is connected if and only if it is path-connected. This generalizes the earlier statement about Rn and Cn, each of which is locally path-connected. More generally, any topological manifold is locally path-connected.

Read more about this topic:  Connected Space

Famous quotes containing the word local:

    These native villages are as unchanging as the woman in one of their stories. When she was called before a local justice he asked her age. “I have 45 years.” “But,” said the justice, “you were forty-five when you appeared before me two years ago.” “SeƱor Judge,” she replied proudly, drawing herself to her full height, “I am not of those who are one thing today and another tomorrow!”
    State of New Mexico, U.S. public relief program (1935-1943)