A uniform space (X, Φ) is a set X equipped with a nonempty family Φ of subsets of the Cartesian product X × X (Φ is called the uniform structure or uniformity of X and its elements entourages (French: neighborhoods or surroundings)) that satisfies the following axioms:
- if U is in Φ, then U contains the diagonal Δ = { (x, x) : x ∈ X }.
- if U is in Φ and V is a subset of X × X which contains U, then V is in Φ
- if U and V are in Φ, then U ∩ V is in Φ
- if U is in Φ, then there exists V in Φ such that, whenever (x, y) and (y, z) are in V, then (x, z) is in U.
- if U is in Φ, then U-1 = { (y, x) : (x, y) in U } is also in Φ
If the last property is omitted we call the space quasiuniform.
One usually writes U={y : (x,y)∈U}. On a graph, a typical entourage is drawn as a blob surrounding the "y=x" diagonal; the U’s are then the vertical cross-sections. If (x,y) ∈ U, one says that x and y are U-close. Similarly, if all pairs of points in a subset A of X are U-close (i.e., if A × A is contained in U), A is called U-small. An entourage U is symmetric if (x,y) ∈ U precisely when (y,x) ∈ U. The first axiom states that each point is U-close to itself for each entourage U. The third axiom guarantees that being "both U-close and V-close" is also a closeness relation in the uniformity. The fourth axiom states that for each entourage U there is an entourage V which is "half as large". Finally, the last axiom states the essentially symmetric property "closeness" with respect to a uniform structure.
A fundamental system of entourages of a uniformity Φ is any set B of entourages of Φ such that every entourage of Ф contains a set belonging to B. Thus, by property 2 above, a fundamental systems of entourages B is enough to specify the uniformity Φ unambiguously: Φ is the set of subsets of X × X that contain a set of B. Every uniform space has a fundamental system of entourages consisting of symmetric entourages.
The right intuition about uniformities is provided by the example of metric spaces: if (X,d) is a metric space, the sets
form a fundamental system of entourages for the standard uniform structure of X. Then x and y are Ua-close precisely when the distance between x and y is at most a.
A uniformity Φ is finer than another uniformity Ψ on the same set if Φ ⊇ Ψ; in that case Ψ is said to be coarser than Φ.
Read more about Uniform Space: Topology of Uniform Spaces, Uniform Continuity, Completeness, Examples, History
Famous quotes containing the words uniform and/or space:
“Odors from decaying food wafting through the air when the door is opened, colorful mold growing between a wet gym uniform and the damp carpet underneath, and the complete supply of bath towels scattered throughout the bedroom can become wonderful opportunities to help your teenager learn once again that the art of living in a community requires compromise, negotiation, and consensus.”
—Barbara Coloroso (20th century)
“... the movie womans world is designed to remind us that a woman may live in a mansion, an apartment, or a yurt, but its all the same thing because what she really lives in is the body of a woman, and that body is allowed to occupy space only according to the dictates of polite society.”
—Jeanine Basinger (b. 1936)