Formal Definition
A topological space X is said to be disconnected if it is the union of two disjoint nonempty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice.
For a topological space X the following conditions are equivalent:
- X is connected.
- X cannot be divided into two disjoint nonempty closed sets.
- The only subsets of X which are both open and closed (clopen sets) are X and the empty set.
- The only subsets of X with empty boundary are X and the empty set.
- X cannot be written as the union of two nonempty separated sets.
- The only continuous functions from X to {0,1} are constant.
Read more about this topic: Connected Space
Famous quotes containing the words formal and/or definition:
“This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. Its no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.”
—Leontine Young (20th century)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)