In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x −1 belongs to D.
Given a field F, if D is a subring of F such that either x or x −1 belongs to D for every x in F, then D is said to be a valuation ring for the field F or a place of F. Since F is in this case indeed the field of fractions of D, a valuation ring for a field is a valuation ring. Another way to characterize the valuation rings of a field F is that valuation rings D of F have F as their field of fractions, and their ideals are totally ordered by inclusion; or equivalently their principal ideals are totally ordered by inclusion. The valuation rings of a field are the maximal elements of the local subrings partially ordered by dominance, where
- dominates if and .
In particular, every valuation ring is a local ring. An integral domain whose localization at any prime ideal is a valuation ring is called a Prüfer domain.
Read more about Valuation Ring: Examples, Definitions, Properties, Units and Maximal Ideals, Value Group, Integral Closure, Principal Ideal Domains
Famous quotes containing the word ring:
“Close friends contribute to our personal growth. They also contribute to our personal pleasure, making the music sound sweeter, the wine taste richer, the laughter ring louder because they are there.”
—Judith Viorst (20th century)