Value Group
The units D* of D comprise a group under multiplication, which is a subgroup of the units F* of F, the nonzero elements of F. These are both abelian groups, and we can define the quotient group V = F*/D*, which is the value group of D. Hence, we have a group homomorphism ν from F* to the value group V. It is customary to write the group operation in V as +.
We can turn V into a totally ordered group by declaring the residue classes of elements of D as "positive". More precisely, V is totally ordered by defining if and only if where and are equivalence classes in V.
Read more about this topic: Valuation Ring
Famous quotes containing the word group:
“Its important to remember that feminism is no longer a group of organizations or leaders. Its the expectations that parents have for their daughters, and their sons, too. Its the way we talk about and treat one another. Its who makes the money and who makes the compromises and who makes the dinner. Its a state of mind. Its the way we live now.”
—Anna Quindlen (20th century)
“A little group of wilful men reflecting no opinion but their own have rendered the great Government of the United States helpless and contemptible.”
—Woodrow Wilson (18561924)