Principal Ideal Domains
A principal ideal domain, or PID, is an integral domain in which every ideal is a principal ideal. A PID with only one non-zero maximal ideal is called a discrete valuation ring, or DVR, and every discrete valuation ring is a valuation ring. A valuation ring is a PID if and only if it is a DVR or a field. A value group is called discrete if and only if it is isomorphic to the additive group of the integers, and a valuation ring has a discrete valuation group if and only if it is a discrete valuation ring.
Read more about this topic: Valuation Ring
Famous quotes containing the words principal, ideal and/or domains:
“I note what you say of the late disturbances in your College. These dissensions are a great affliction on the American schools, and a principal impediment to education in this country.”
—Thomas Jefferson (17431826)
“The republic, as I at least understand it, means association, of which liberty is only an element, a necessary antecedent. It means association, a new philosophy of life, a divine Ideal that shall move the world, the only means of regeneration vouchsafed to the human race.”
—Giuseppe Mazzini (18051872)
“I shall be a benefactor if I conquer some realms from the night, if I report to the gazettes anything transpiring about us at that season worthy of their attention,if I can show men that there is some beauty awake while they are asleep,if I add to the domains of poetry.”
—Henry David Thoreau (18171862)