Principal Ideal Domains
A principal ideal domain, or PID, is an integral domain in which every ideal is a principal ideal. A PID with only one non-zero maximal ideal is called a discrete valuation ring, or DVR, and every discrete valuation ring is a valuation ring. A valuation ring is a PID if and only if it is a DVR or a field. A value group is called discrete if and only if it is isomorphic to the additive group of the integers, and a valuation ring has a discrete valuation group if and only if it is a discrete valuation ring.
Read more about this topic: Valuation Ring
Famous quotes containing the words principal, ideal and/or domains:
“The principal rule of art is to please and to move. All the other rules were created to achieve this first one.”
—Jean Racine (16391699)
“I think the ideal situation for a family is to be completely incestuous.”
—William Burroughs (b. 1914)
“I shall be a benefactor if I conquer some realms from the night, if I report to the gazettes anything transpiring about us at that season worthy of their attention,if I can show men that there is some beauty awake while they are asleep,if I add to the domains of poetry.”
—Henry David Thoreau (18171862)