Valuation Ring - Integral Closure

Integral Closure

A valuation ring is integrally closed. Here, an integral domain D which is integrally closed in its field of fractions is said to be integrally closed. This means that if a member x of the field of fractions F of D satisfies an equation of the form xn + a1xn−1 + ... + a0 = 0, where the coefficients ai are elements of D, then x is in D.

Read more about this topic:  Valuation Ring

Famous quotes containing the word integral:

    Painting myself for others, I have painted my inward self with colors clearer than my original ones. I have no more made my book than my book has made me—a book consubstantial with its author, concerned with my own self, an integral part of my life; not concerned with some third-hand, extraneous purpose, like all other books.
    Michel de Montaigne (1533–1592)