Examples
- Any field is a valuation ring.
- Z(p), the localization of the integers Z at the prime ideal (p), consisting of ratios where the numerator is any integer and the denominator is not divisible by p. The field of fractions is the field of rational numbers Q.
- The ring of meromorphic functions on the entire complex plane which have a Maclaurin series (Taylor series expansion at zero) is a valuation ring. The field of fractions are the functions meromorphic on the whole plane. If f does not have a Maclaurin series then 1/f does.
- Any ring of p-adic integers Zp for a given prime p is a local ring, with field of fractions the p-adic numbers Qp. The algebraic closure Zpcl of the p-adic integers is also a local ring, with field of fractions Qpcl. Both Zp and Zpcl are valuation rings.
- Let k be an ordered field. An element of k is called finite if it lies between two integers n<x<m; otherwise it is called infinite. The set D of finite elements of k is a valuation ring. The set of elements x such that x ∈ D and x−1∉D is the set of infinitesimal elements; and an element x such that x∉D and x−1∈D is called infinite.
- The ring F of finite elements of a hyperreal field *R is a valuation ring of *R. F consists of all hyperreal numbers differing from a standard real by an infinitesimal amount, which is equivalent to saying a hyperreal number x such that −n < x < n for some standard integer n. The residue field, finite hyperreal numbers modulo the ideal of infinitesimal hyperreal numbers, is isomorphic to the real numbers.
Read more about this topic: Valuation Ring
Famous quotes containing the word examples:
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)