Naive set theory is one of several theories of sets used in the discussion of the foundations of mathematics. The informal content of this naive set theory supports both the aspects of mathematical sets familiar in discrete mathematics (for example Venn diagrams and symbolic reasoning about their Boolean algebra), and the everyday usage of set theory concepts in most contemporary mathematics.
Sets are of great importance in mathematics; in fact, in modern formal treatments, most mathematical objects (numbers, relations, functions, etc.) are defined in terms of sets. Naive set theory can be seen as a stepping-stone to more formal treatments, and suffices for many purposes.
Read more about Naive Set Theory: Requirements, Sets, Membership and Equality, Specifying Sets, Subsets, Universal Sets and Absolute Complements, Unions, Intersections, and Relative Complements, Ordered Pairs and Cartesian Products, Some Important Sets, Paradoxes
Famous quotes containing the words naive, set and/or theory:
“It would be naive to think that peace and justice can be achieved easily. No set of rules or study of history will automatically resolve the problems.... However, with faith and perseverance,... complex problems in the past have been resolved in our search for justice and peace. They can be resolved in the future, provided, of course, that we can think of five new ways to measure the height of a tall building by using a barometer.”
—Jimmy Carter (James Earl Carter, Jr.)
“This happy breed of men, this little world,
This precious stone set in the silver sea,
Which serves it in the office of a wall,
Or as a moat defensive to a house,
Against the envy of less happier lands,
This blessed plot, this earth, this realm, this England.”
—William Shakespeare (1564–1616)
“A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of gov’t as beyond its control, of itself as wholly controlled by gov’t. Somewhere in between and in gradations is the group that has the sense that gov’t exists for it, and shapes its consciousness accordingly.”
—Lionel Trilling (1905–1975)