Naive Set Theory - Universal Sets and Absolute Complements

Universal Sets and Absolute Complements

In certain contexts we may consider all sets under consideration as being subsets of some given universal set. For instance, if we are investigating properties of the real numbers R (and subsets of R), then we may take R as our universal set. A true universal set is not included in standard set theory (see Paradoxes below), but is included in some non-standard set theories.

Given a universal set U and a subset A of U, we may define the complement of A (in U) as

AC := {xU : xA}.

In other words, AC ("A-complement"; sometimes simply A', "A-prime" ) is the set of all members of U which are not members of A. Thus with R, Z and O defined as in the section on subsets, if Z is the universal set, then OC is the set of even integers, while if R is the universal set, then OC is the set of all real numbers that are either even integers or not integers at all.

Read more about this topic:  Naive Set Theory

Famous quotes containing the words universal, sets and/or absolute:

    So in accepting the leading of the sentiments, it is not what we believe concerning the immortality of the soul, or the like, but the universal impulse to believe, that is the material circumstance, and is the principal fact in this history of the globe.
    Ralph Waldo Emerson (1803–1882)

    Willing sets you free: that is the true doctrine of will and freedom—thus Zarathustra instructs you.
    Friedrich Nietzsche (1844–1900)

    If a man needs an elaborate tombstone in order to remain in the memory of his country, it is clear that his living at all was an act of absolute superfluity.
    Oscar Wilde (1854–1900)