Universal Sets and Absolute Complements
In certain contexts we may consider all sets under consideration as being subsets of some given universal set. For instance, if we are investigating properties of the real numbers R (and subsets of R), then we may take R as our universal set. A true universal set is not included in standard set theory (see Paradoxes below), but is included in some non-standard set theories.
Given a universal set U and a subset A of U, we may define the complement of A (in U) as
- AC := {x ∈ U : x ∉ A}.
In other words, AC ("A-complement"; sometimes simply A', "A-prime" ) is the set of all members of U which are not members of A. Thus with R, Z and O defined as in the section on subsets, if Z is the universal set, then OC is the set of even integers, while if R is the universal set, then OC is the set of all real numbers that are either even integers or not integers at all.
Read more about this topic: Naive Set Theory
Famous quotes containing the words universal, sets and/or absolute:
“I have all my life been on my guard against the information conveyed by the sense of hearingit being one of my earliest observations, the universal inclination of humankind is to be led by the ears, and I am sometimes apt to imagine that they are given to men as they are to pitchers, purposely that they may be carried about by them.”
—Mary Wortley, Lady Montagu (16891762)
“The vain man does not wish so much to be prominent as to feel himself prominent; he therefore disdains none of the expedients for self-deception and self-outwitting. It is not the opinion of others that he sets his heart on, but his opinion of their opinion.”
—Friedrich Nietzsche (18441900)
“It is in the nature of allegory, as opposed to symbolism, to beg the question of absolute reality. The allegorist avails himself of a formal correspondence between ideas and things, both of which he assumes as given; he need not inquire whether either sphere is real or whether, in the final analysis, reality consists in their interaction.”
—Charles, Jr. Feidelson, U.S. educator, critic. Symbolism and American Literature, ch. 1, University of Chicago Press (1953)