Set theory is the branch of mathematics that studies sets, which are collections of objects. Although any type of object can be collected into a set, set theory is applied most often to objects that are relevant to mathematics. The language of set theory can be used in the definitions of nearly all mathematical objects.
The modern study of set theory was initiated by Georg Cantor and Richard Dedekind in the 1870s. After the discovery of paradoxes in naive set theory, numerous axiom systems were proposed in the early twentieth century, of which the Zermelo–Fraenkel axioms, with the axiom of choice, are the best-known.
Set theory is commonly employed as a foundational system for mathematics, particularly in the form of Zermelo–Fraenkel set theory with the axiom of choice. Beyond its foundational role, set theory is a branch of mathematics in its own right, with an active research community. Contemporary research into set theory includes a diverse collection of topics, ranging from the structure of the real number line to the study of the consistency of large cardinals.
Read more about Set Theory: History, Basic Concepts, Some Ontology, Axiomatic Set Theory, Applications, Objections To Set Theory As A Foundation For Mathematics
Famous quotes containing the words set and/or theory:
“Who shall set a limit to the influence of a human being? There are men, who, by their sympathetic attractions, carry nations with them, and lead the activity of the human race. And if there be such a tie, that, wherever the mind of man goes, nature will accompany him, perhaps there are men whose magnetisms are of that force to draw material and elemental powers, and, where they appear, immense instrumentalities organize around them.”
—Ralph Waldo Emerson (18031882)
“There never comes a point where a theory can be said to be true. The most that one can claim for any theory is that it has shared the successes of all its rivals and that it has passed at least one test which they have failed.”
—A.J. (Alfred Jules)