Ordered Pairs and Cartesian Products
Intuitively, an ordered pair is simply a collection of two objects such that one can be distinguished as the first element and the other as the second element, and having the fundamental property that, two ordered pairs are equal if and only if their first elements are equal and their second elements are equal.
Formally, an ordered pair with first coordinate a, and second coordinate b, usually denoted by (a, b), can be defined as the set {{a}, {a, b}}.
It follows that, two ordered pairs (a,b) and (c,d) are equal if and only if a = c and b = d.
Alternatively, an ordered pair can be formally thought of as a set {a,b} with a total order.
(The notation (a, b) is also used to denote an open interval on the real number line, but the context should make it clear which meaning is intended. Otherwise, the notation ]a, b[ may be used to denote the open interval whereas (a, b) is used for the ordered pair).
If A and B are sets, then the Cartesian product (or simply product) is defined to be:
- A × B = {(a,b) : a is in A and b is in B}.
That is, A × B is the set of all ordered pairs whose first coordinate is an element of A and whose second coordinate is an element of B.
We can extend this definition to a set A × B × C of ordered triples, and more generally to sets of ordered n-tuples for any positive integer n. It is even possible to define infinite Cartesian products, but to do this we need a more recondite definition of the product.
Cartesian products were first developed by René Descartes in the context of analytic geometry. If R denotes the set of all real numbers, then R2 := R × R represents the Euclidean plane and R3 := R × R × R represents three-dimensional Euclidean space.
Read more about this topic: Naive Set Theory
Famous quotes containing the words ordered and/or products:
“The peace conference must not adjourn without the establishment of some ordered system of international government, backed by power enough to give authority to its decrees. ... Unless a league something like this results at our peace conference, we shall merely drop back into armed hostility and international anarchy. The war will have been fought in vain ...”
—Virginia Crocheron Gildersleeve (18771965)
“Isnt it odd that networks accept billions of dollars from advertisers to teach people to use products and then proclaim that children arent learning about violence from their steady diet of it on television!”
—Toni Liebman (20th century)