A metric space is an ordered pair where is a set and is a metric on, i.e., a function
such that for any, the following holds:
- (non-negative),
- iff (identity of indiscernibles),
- (symmetry) and
- (triangle inequality) .
The first condition follows from the other three, since:
The function is also called distance function or simply distance. Often, is omitted and one just writes for a metric space if it is clear from the context what metric is used.
Read more about Metric Space: Examples of Metric Spaces, Open and Closed Sets, Topology and Convergence, Types of Maps Between Metric Spaces, Notions of Metric Space Equivalence, Topological Properties, Distance Between Points and Sets; Hausdorff Distance and Gromov Metric, Product Metric Spaces, Quotient Metric Spaces, Generalizations of Metric Spaces
Famous quotes containing the word space:
“In bourgeois society, the French and the industrial revolution transformed the authorization of political space. The political revolution put an end to the formalized hierarchy of the ancien regimé.... Concurrently, the industrial revolution subverted the social hierarchy upon which the old political space was based. It transformed the experience of society from one of vertical hierarchy to one of horizontal class stratification.”
—Donald M. Lowe, U.S. historian, educator. History of Bourgeois Perception, ch. 4, University of Chicago Press (1982)