A metric space is an ordered pair where is a set and is a metric on, i.e., a function
such that for any, the following holds:
- (non-negative),
- iff (identity of indiscernibles),
- (symmetry) and
- (triangle inequality) .
The first condition follows from the other three, since:
The function is also called distance function or simply distance. Often, is omitted and one just writes for a metric space if it is clear from the context what metric is used.
Read more about Metric Space: Examples of Metric Spaces, Open and Closed Sets, Topology and Convergence, Types of Maps Between Metric Spaces, Notions of Metric Space Equivalence, Topological Properties, Distance Between Points and Sets; Hausdorff Distance and Gromov Metric, Product Metric Spaces, Quotient Metric Spaces, Generalizations of Metric Spaces
Famous quotes containing the word space:
“To play is nothing but the imitative substitution of a pleasurable, superfluous and voluntary action for a serious, necessary, imperative and difficult one. At the cradle of play as well as of artistic activity there stood leisure, tedium entailed by increased spiritual mobility, a horror vacui, the need of letting forms no longer imprisoned move freely, of filling empty time with sequences of notes, empty space with sequences of form.”
—Max J. Friedländer (18671958)