A metric space is an ordered pair where is a set and is a metric on, i.e., a function
such that for any, the following holds:
- (non-negative),
- iff (identity of indiscernibles),
- (symmetry) and
- (triangle inequality) .
The first condition follows from the other three, since:
The function is also called distance function or simply distance. Often, is omitted and one just writes for a metric space if it is clear from the context what metric is used.
Read more about Metric Space: Examples of Metric Spaces, Open and Closed Sets, Topology and Convergence, Types of Maps Between Metric Spaces, Notions of Metric Space Equivalence, Topological Properties, Distance Between Points and Sets; Hausdorff Distance and Gromov Metric, Product Metric Spaces, Quotient Metric Spaces, Generalizations of Metric Spaces
Famous quotes containing the word space:
“Play is a major avenue for learning to manage anxiety. It gives the child a safe space where she can experiment at will, suspending the rules and constraints of physical and social reality. In play, the child becomes master rather than subject.... Play allows the child to transcend passivity and to become the active doer of what happens around her.”
—Alicia F. Lieberman (20th century)