A metric space is an ordered pair where is a set and is a metric on, i.e., a function
such that for any, the following holds:
- (non-negative),
- iff (identity of indiscernibles),
- (symmetry) and
- (triangle inequality) .
The first condition follows from the other three, since:
The function is also called distance function or simply distance. Often, is omitted and one just writes for a metric space if it is clear from the context what metric is used.
Read more about Metric Space: Examples of Metric Spaces, Open and Closed Sets, Topology and Convergence, Types of Maps Between Metric Spaces, Notions of Metric Space Equivalence, Topological Properties, Distance Between Points and Sets; Hausdorff Distance and Gromov Metric, Product Metric Spaces, Quotient Metric Spaces, Generalizations of Metric Spaces
Famous quotes containing the word space:
“I would have broke mine eye-strings, cracked them, but
To look upon him, till the diminution
Of space had pointed him sharp as my needle;
Nay, followed him till he had melted from
The smallness of a gnat to air, and then
Have turned mine eye and wept.”
—William Shakespeare (15641616)