Metric Space - Notions of Metric Space Equivalence

Notions of Metric Space Equivalence

Given two metric spaces (M1, d1) and (M2, d2):

  • They are called homeomorphic (topologically isomorphic) if there exists a homeomorphism between them (i.e., a bijection continuous in both directions).
  • They are called uniformic (uniformly isomorphic) if there exists a uniform isomorphism between them (i.e., a bijection uniformly continuous in both directions).
  • They are called isometric if there exists a bijective isometry between them. In this case, the two metric spaces are essentially identical.
  • They are called quasi-isometric if there exists a quasi-isometry between them.

Read more about this topic:  Metric Space

Famous quotes containing the words notions of, notions and/or space:

    the full analysis of the notions of saying something and understanding what one said inevitably involves a concept which, as I will show in detail, essentially corresponds to the Cartesian idea of thought.
    Zeno Vendler (b. 1921)

    Hang ideas! They are tramps, vagabonds, knocking at the back- door of your mind, each taking a little of your substance, each carrying away some crumb of that belief in a few simple notions you must cling to if you want to live decently and would like to die easy!
    Joseph Conrad (1857–1924)

    Oh, my. I’d forgotten how much I hate space travel.
    George Lucas (b. 1944)