Metric Space - Distance Between Points and Sets; Hausdorff Distance and Gromov Metric

Distance Between Points and Sets; Hausdorff Distance and Gromov Metric

A simple way to construct a function separating a point from a closed set (as required for a completely regular space) is to consider the distance between the point and the set. If (M,d) is a metric space, S is a subset of M and x is a point of M, we define the distance from x to S as

where represents the infimum.

Then d(x, S) = 0 if and only if x belongs to the closure of S. Furthermore, we have the following generalization of the triangle inequality:

which in particular shows that the map is continuous.

Given two subsets S and T of M, we define their Hausdorff distance to be

where represents the supremum.

In general, the Hausdorff distance dH(S,T) can be infinite. Two sets are close to each other in the Hausdorff distance if every element of either set is close to some element of the other set.

The Hausdorff distance dH turns the set K(M) of all non-empty compact subsets of M into a metric space. One can show that K(M) is complete if M is complete. (A different notion of convergence of compact subsets is given by the Kuratowski convergence.)

One can then define the Gromov–Hausdorff distance between any two metric spaces by considering the minimal Hausdorff distance of isometrically embedded versions of the two spaces. Using this distance, the set of all (isometry classes of) compact metric spaces becomes a metric space in its own right.

Read more about this topic:  Metric Space

Famous quotes containing the words distance between, distance and/or points:

    Under all conditions well-organized violence seems to him the shortest distance between two points.
    Leon Trotsky (1879–1940)

    Why does the past look so enticing to us? For the same reason why from a distance a meadow with flowers looks like a flower bed.
    Franz Grillparzer (1791–1872)

    He is the best sailor who can steer within the fewest points of the wind, and extract a motive power out of the greatest obstacles. Most begin to veer and tack as soon as the wind changes from aft, and as within the tropics it does not blow from all points of the compass, there are some harbors which they can never reach.
    Henry David Thoreau (1817–1862)