Metric Space - Product Metric Spaces

Product Metric Spaces

If are metric spaces, and N is the Euclidean norm on Rn, then is a metric space, where the product metric is defined by

and the induced topology agrees with the product topology. By the equivalence of norms in finite dimensions, an equivalent metric is obtained if N is the taxicab norm, a p-norm, the max norm, or any other norm which is non-decreasing as the coordinates of a positive n-tuple increase (yielding the triangle inequality).

Similarly, a countable product of metric spaces can be obtained using the following metric

An uncountable product of metric spaces need not be metrizable. For example, is not first-countable and thus isn't metrizable.

Read more about this topic:  Metric Space

Famous quotes containing the words product and/or spaces:

    The writer’s language is to some degree the product of his own action; he is both the historian and the agent of his own language.
    Paul De Man (1919–1983)

    In any case, raw aggression is thought to be the peculiar province of men, as nurturing is the peculiar province of women.... The psychologist Erik Erikson discovered that, while little girls playing with blocks generally create pleasant interior spaces and attractive entrances, little boys are inclined to pile up the blocks as high as they can and then watch them fall down: “the contemplation of ruins,” Erikson observes, “is a masculine specialty.”
    Joyce Carol Oates (b. 1938)