Complete Metric Space

Complete Metric Space

In mathematical analysis, a metric space M is called complete (or a Cauchy space) if every Cauchy sequence of points in M has a limit that is also in M or, alternatively, if every Cauchy sequence in M converges in M.

Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it. (See the examples below.) It is always possible to "fill all the holes", leading to the completion of a given space, as explained below.

Read more about Complete Metric Space:  Examples, Some Theorems, Completion, Topologically Complete Spaces, Alternatives and Generalizations

Famous quotes containing the words complete and/or space:

    To throw obstacles in the way of a complete education is like putting out the eyes; to deny the rights of property is like cutting off the hands. To refuse political equality is like robbing the ostracized of all self-respect, of credit in the market place, of recompense in the world of work, of a voice in choosing those who make and administer the law, a choice in the jury before whom they are tried, and in the judge who decides their punishment.
    Elizabeth Cady Stanton (1815–1902)

    No being exists or can exist which is not related to space in some way. God is everywhere, created minds are somewhere, and body is in the space that it occupies; and whatever is neither everywhere nor anywhere does not exist. And hence it follows that space is an effect arising from the first existence of being, because when any being is postulated, space is postulated.
    Isaac Newton (1642–1727)