Gibbs Phenomenon
In mathematics, the Gibbs phenomenon, discovered by Henry Wilbraham (1848) and rediscovered by J. Willard Gibbs (1899), is the peculiar manner in which the Fourier series of a piecewise continuously differentiable periodic function behaves at a jump discontinuity: the nth partial sum of the Fourier series has large oscillations near the jump, which might increase the maximum of the partial sum above that of the function itself. The overshoot does not die out as the frequency increases, but approaches a finite limit.
These are one cause of ringing artifacts in signal processing.
Read more about Gibbs Phenomenon: Description, Formal Mathematical Description of The Phenomenon, Signal Processing Explanation, The Square Wave Example, Consequences
Famous quotes containing the word phenomenon:
“The only phenomenon with which writing has always been concomitant is the creation of cities and empires, that is the integration of large numbers of individuals into a political system, and their grading into castes or classes.... It seems to have favored the exploitation of human beings rather than their enlightenment.”
—Claude Lévi-Strauss (b. 1908)