Gibbs Phenomenon - Description

Description

The Gibbs phenomenon involves both the fact that Fourier sums overshoot at a jump discontinuity, and that this overshoot does not die out as the frequency increases.

The three pictures on the right demonstrate the phenomenon for a square wave (of height ) whose Fourier expansion is

More precisely, this is the function f which equals between and and between and for every integer n; thus this square wave has a jump discontinuity of height at every integer multiple of .

As can be seen, as the number of terms rises, the error of the approximation is reduced in width and energy, but converges to a fixed height. A calculation for the square wave (see Zygmund, chap. 8.5., or the computations at the end of this article) gives an explicit formula for the limit of the height of the error. It turns out that the Fourier series exceeds the height of the square wave by

or about 9 percent. More generally, at any jump point of a piecewise continuously differentiable function with a jump of a, the nth partial Fourier series will (for n very large) overshoot this jump by approximately at one end and undershoot it by the same amount at the other end; thus the "jump" in the partial Fourier series will be about 18% larger than the jump in the original function. At the location of the discontinuity itself, the partial Fourier series will converge to the midpoint of the jump (regardless of what the actual value of the original function is at this point). The quantity

is sometimes known as the Wilbraham–Gibbs constant.

Read more about this topic:  Gibbs Phenomenon

Famous quotes containing the word description:

    It is possible—indeed possible even according to the old conception of logic—to give in advance a description of all ‘true’ logical propositions. Hence there can never be surprises in logic.
    Ludwig Wittgenstein (1889–1951)

    The next Augustan age will dawn on the other side of the Atlantic. There will, perhaps, be a Thucydides at Boston, a Xenophon at New York, and, in time, a Virgil at Mexico, and a Newton at Peru. At last, some curious traveller from Lima will visit England and give a description of the ruins of St Paul’s, like the editions of Balbec and Palmyra.
    Horace Walpole (1717–1797)

    Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.
    Willard Van Orman Quine (b. 1908)