Signal Processing Explanation
For more details on this topic, see Ringing artifacts.From the point of view of signal processing, the Gibbs phenomenon is the step response of a low-pass filter, and the oscillations are called ringing or ringing artifacts. Truncating the Fourier transform of a signal on the real line, or the Fourier series of a periodic signal (equivalently, a signal on the circle) corresponds to filtering out the higher frequencies by an ideal (brick-wall) low-pass/high-cut filter. This can be represented as convolution of the original signal with the impulse response of the filter (also known as the kernel), which is the sinc function. Thus the Gibbs phenomenon can be seen as the result of convolving a Heaviside step function (if periodicity is not required) or a square wave (if periodic) with a sinc function: the oscillations in the sinc function cause the ripples in the output.
In the case of convolving with a Heaviside step function, the resulting function is exactly the integral of the sinc function, the sine integral; for a square wave the description is not as simply stated. For the step function, the magnitude of the undershoot is thus exactly the integral of the (left) tail, integrating to the first negative zero: for the normalized sinc of unit sampling period, this is The overshoot is accordingly of the same magnitude: the integral of the right tail, or, which amounts to the same thing, the difference between the integral from negative infinity to the first positive zero, minus 1 (the non-overshooting value).
The overshoot and undershoot can be understood thus: kernels are generally normalized to have integral 1, so they result in a mapping of constant functions to constant functions – otherwise they have gain. The value of a convolution at a point is a linear combination of the input signal, with coefficients (weights) the values of the kernel. If a kernel is non-negative, such as for a Gaussian kernel, then the value of the filtered signal will be a convex combination of the input values (the coefficients (the kernel) integrate to 1, and are non-negative), and will thus fall between the minimum and maximum of the input signal – it will not undershoot or overshoot. If, on the other hand, the kernel assumes negative values, such as the sinc function, then the value of the filtered signal will instead be an affine combination of the input values, and may fall outside of the minimum and maximum of the input signal, resulting in undershoot and overshoot, as in the Gibbs phenomenon.
Taking a longer expansion – cutting at a higher frequency – corresponds in the frequency domain to widening the brick-wall, which in the time domain corresponds to narrowing the sinc function and increasing its height by the same factor, leaving the integrals between corresponding points unchanged. This is a general feature of the Fourier transform: widening in one domain corresponds to narrowing and increasing height in the other. This results in the oscillations in sinc being narrower and taller and, in the filtered function (after convolution), yields oscillations that are narrower and thus have less area, but does not reduce the magnitude: cutting off at any finite frequency results in a sinc function, however narrow, with the same tail integrals. This explains the persistence of the overshoot and undershoot.
-
Oscillations can be interpreted as convolution with a sinc.
-
Higher cutoff makes the sinc narrower but taller, with the same magnitude tail integrals, yielding higher frequency oscillations, but whose magnitude does not vanish.
Thus the features of the Gibbs phenomenon are interpreted as follows:
- the undershoot is due to the impulse response having a negative tail integral, which is possible because the function takes negative values;
- the overshoot offsets this, by symmetry (the overall integral does not change under filtering);
- the persistence of the oscillations is because increasing the cutoff narrows the impulse response, but does not reduce its integral – the oscillations thus move towards the discontinuity, but do not decrease in magnitude.
Read more about this topic: Gibbs Phenomenon
Famous quotes containing the words signal and/or explanation:
“The experience of a sense of guilt for wrong-doing is necessary for the development of self-control. The guilt feelings will later serve as a warning signal which the child can produce himself when an impulse to repeat the naughty act comes over him. When the child can produce his on warning signals, independent of the actual presence of the adult, he is on the way to developing a conscience.”
—Selma H. Fraiberg (20th century)
“There is no explanation for evil. It must be looked upon as a necessary part of the order of the universe. To ignore it is childish, to bewail it senseless.”
—W. Somerset Maugham (18741965)