Gibbs Phenomenon - Formal Mathematical Description of The Phenomenon

Formal Mathematical Description of The Phenomenon

Let be a piecewise continuously differentiable function which is periodic with some period . Suppose that at some point, the left limit and right limit of the function differ by a non-zero gap :

For each positive integer N ≥ 1, let SN f be the Nth partial Fourier series

 S_N f(x) := \sum_{-N \leq n \leq N} \hat f(n) e^{2\pi i n x/L}
= \frac{1}{2} a_0 + \sum_{n=1}^N \left( a_n \cos\left(\frac{2\pi nx}{L}\right) + b_n \sin\left(\frac{2\pi nx}{L}\right) \right),

where the Fourier coefficients are given by the usual formulae

Then we have

and

but

More generally, if is any sequence of real numbers which converges to as, and if the gap a is positive then

and

If instead the gap a is negative, one needs to interchange limit superior with limit inferior, and also interchange the ≤ and ≥ signs, in the above two inequalities.

Read more about this topic:  Gibbs Phenomenon

Famous quotes containing the words formal, mathematical, description and/or phenomenon:

    The conviction that the best way to prepare children for a harsh, rapidly changing world is to introduce formal instruction at an early age is wrong. There is simply no evidence to support it, and considerable evidence against it. Starting children early academically has not worked in the past and is not working now.
    David Elkind (20th century)

    All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no one’s brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.
    Roger Bacon (c. 1214–c. 1294)

    The type of fig leaf which each culture employs to cover its social taboos offers a twofold description of its morality. It reveals that certain unacknowledged behavior exists and it suggests the form that such behavior takes.
    Freda Adler (b. 1934)

    Since everything in nature answers to a moral power, if any phenomenon remains brute and dark, it is that the corresponding faculty in the observer is not yet active.
    Ralph Waldo Emerson (1803–1882)