Formal Mathematical Description of The Phenomenon
Let be a piecewise continuously differentiable function which is periodic with some period . Suppose that at some point, the left limit and right limit of the function differ by a non-zero gap :
For each positive integer N ≥ 1, let SN f be the Nth partial Fourier series
where the Fourier coefficients are given by the usual formulae
Then we have
and
but
More generally, if is any sequence of real numbers which converges to as, and if the gap a is positive then
and
If instead the gap a is negative, one needs to interchange limit superior with limit inferior, and also interchange the ≤ and ≥ signs, in the above two inequalities.
Read more about this topic: Gibbs Phenomenon
Famous quotes containing the words formal, mathematical, description and/or phenomenon:
“Good gentlemen, look fresh and merrily.
Let not our looks put on our purposes,
But bear it as our Roman actors do,
With untired spirits and formal constancy.”
—William Shakespeare (15641616)
“As we speak of poetical beauty, so ought we to speak of mathematical beauty and medical beauty. But we do not do so; and that reason is that we know well what is the object of mathematics, and that it consists in proofs, and what is the object of medicine, and that it consists in healing. But we do not know in what grace consists, which is the object of poetry.”
—Blaise Pascal (16231662)
“God damnit, why must all those journalists be such sticklers for detail? Why, theyd hold you to an accurate description of the first time you ever made love, expecting you to remember the color of the room and the shape of the windows.”
—Lyndon Baines Johnson (19081973)
“The defiance of established authority, religious and secular, social and political, as a world-wide phenomenon may well one day be accounted the outstanding event of the last decade.”
—Hannah Arendt (19061975)
