Gibbs Phenomenon - The Square Wave Example

The Square Wave Example

We now illustrate the above Gibbs phenomenon in the case of the square wave described earlier. In this case the period L is, the discontinuity is at zero, and the jump a is equal to . For simplicity let us just deal with the case when N is even (the case of odd N is very similar). Then we have

Substituting, we obtain

as claimed above. Next, we compute

S_N f\left(\frac{2\pi}{2N}\right) = \sin\left(\frac{\pi}{N}\right) + \frac{1}{3} \sin\left(\frac{3\pi}{N}\right)
+ \cdots + \frac{1}{N-1} \sin\left( \frac{(N-1)\pi}{N} \right).

If we introduce the normalized sinc function, we can rewrite this as

S_N f\left(\frac{2\pi}{2N}\right) = \frac{\pi}{2} \left[ \frac{2}{N} \operatorname{sinc}\left(\frac{1}{N}\right) + \frac{2}{N} \operatorname{sinc}\left(\frac{3}{N}\right)
+ \cdots + \frac{2}{N} \operatorname{sinc}\left( \frac{(N-1)}{N} \right) \right].

But the expression in square brackets is a numerical integration approximation to the integral (more precisely, it is a midpoint rule approximation with spacing ). Since the sinc function is continuous, this approximation converges to the actual integral as . Thus we have


\begin{align}
\lim_{N \to \infty} S_N f\left(\frac{2\pi}{2N}\right)
& = \frac{\pi}{2} \int_0^1 \operatorname{sinc}(x)\, dx \\
& = \frac{1}{2} \int_{x=0}^1 \frac{\sin(\pi x)}{\pi x}\, d(\pi x) \\
& = \frac{1}{2} \int_0^\pi \frac{\sin(t)}{t}\ dt \quad = \quad \frac{\pi}{4} + \frac{\pi}{2} \cdot (0.089490\dots),
\end{align}

which was what was claimed in the previous section. A similar computation shows

\lim_{N \to \infty} S_N f\left(-\frac{2\pi}{2N}\right) = -\frac{\pi}{2} \int_0^1 \operatorname{sinc}(x)\ dx = -\frac{\pi}{4} -
\frac{\pi}{2} \cdot (0.089490\dots).

Read more about this topic:  Gibbs Phenomenon

Famous quotes containing the words square and/or wave:

    The square dance fiddler’s first concern is to carry a tune, but he must carry it loud enough to be heard over the noise of stamping feet, the cries of the “caller,” and the shouts of the dancers. When he fiddles, he “fiddles all over”; feet, hands, knees, head, and eyes are all busy.
    State of Oklahoma, U.S. public relief program (1935-1943)

    And his wish is intimacy,
    Intimater intimacy,
    And a stricter privacy;
    The impossible shall yet be done,
    And, being two, shall still be one.
    As the wave breaks to foam on shelves,
    Then runs into a wave again,
    So lovers melt their sundered selves,
    Yet melted would be twain.
    Ralph Waldo Emerson (1803–1882)