Euler Method

In mathematics and computational science, the Euler method is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta method. The Euler method is named after Leonhard Euler, who treated it in his book Institutionum calculi integralis (published 1768–70).

The Euler method is a first-order method, which means that the local error (error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size. It also suffers from stability problems. For these reasons, the Euler method is not often used in practice. It serves as the basis to construct more complicated methods.

Read more about Euler Method:  Informal Geometrical Description, Formulation of The Method, Example, Derivation, Local Truncation Error, Global Truncation Error, Numerical Stability, Rounding Errors, Modifications and Extensions

Famous quotes containing the word method:

    “English! they are barbarians; they don’t believe in the great God.” I told him, “Excuse me, Sir. We do believe in God, and in Jesus Christ too.” “Um,” says he, “and in the Pope?” “No.” “And why?” This was a puzzling question in these circumstances.... I thought I would try a method of my own, and very gravely replied, “Because we are too far off.” A very new argument against the universal infallibility of the Pope.
    James Boswell (1740–1795)