Local Truncation Error
The local truncation error of the Euler method is error made in a single step. It is the difference between the numerical solution after one step, and the exact solution at time . The numerical solution is given by
For the exact solution, we use the Taylor expansion mentioned in the section Derivation above:
The local truncation error (LTE) introduced by the Euler method is given by the difference between these equations:
This result is valid if has a bounded third derivative.
This shows that for small, the local truncation error is approximately proportional to . This makes the Euler method less accurate (for small ) than other higher-order techniques such as Runge-Kutta methods and linear multistep methods, for which the local truncation error is proportial to a higher power of the step size.
A slightly different formulation for the local truncation error can be obtained by using the Lagrange form for the remainder term in Taylor's theorem. If has a continuous second derivative, then there exists a such that
In the above expressions for the error, the second derivative of the unknown exact solution can be replaced by an expression involving the right-hand side of the differential equation. Indeed, it follows from the equation that
Read more about this topic: Euler Method
Famous quotes containing the words local and/or error:
“These native villages are as unchanging as the woman in one of their stories. When she was called before a local justice he asked her age. I have 45 years. But, said the justice, you were forty-five when you appeared before me two years ago. SeƱor Judge, she replied proudly, drawing herself to her full height, I am not of those who are one thing today and another tomorrow!”
—State of New Mexico, U.S. public relief program (1935-1943)
“For my part I do, qua lay physicist, believe in physical objects and not in Homers gods; and I consider it a scientific error to believe otherwise.”
—Willard Van Orman Quine (b. 1908)