Local Truncation Error
The local truncation error of the Euler method is error made in a single step. It is the difference between the numerical solution after one step, and the exact solution at time . The numerical solution is given by
For the exact solution, we use the Taylor expansion mentioned in the section Derivation above:
The local truncation error (LTE) introduced by the Euler method is given by the difference between these equations:
This result is valid if has a bounded third derivative.
This shows that for small, the local truncation error is approximately proportional to . This makes the Euler method less accurate (for small ) than other higher-order techniques such as Runge-Kutta methods and linear multistep methods, for which the local truncation error is proportial to a higher power of the step size.
A slightly different formulation for the local truncation error can be obtained by using the Lagrange form for the remainder term in Taylor's theorem. If has a continuous second derivative, then there exists a such that
In the above expressions for the error, the second derivative of the unknown exact solution can be replaced by an expression involving the right-hand side of the differential equation. Indeed, it follows from the equation that
Read more about this topic: Euler Method
Famous quotes containing the words local and/or error:
“The country is fed up with children and their problems. For the first time in history, the differences in outlook between people raising children and those who are not are beginning to assume some political significance. This difference is already a part of the conflicts in local school politics. It may spread to other levels of government. Society has less time for the concerns of those who raise the young or try to teach them.”
—Joseph Featherstone (20th century)
“There is a lot of difference between tempting and leading into error. God tempts but does not lead into error. To tempt is to provide opportunities for us to do certain things if we do not love God, but putting us under no necessity to do so. To lead into error is to compel a man necessarily to conclude and follow a falsehood.”
—Blaise Pascal (16231662)