Euler Method - Local Truncation Error

Local Truncation Error

The local truncation error of the Euler method is error made in a single step. It is the difference between the numerical solution after one step, and the exact solution at time . The numerical solution is given by

For the exact solution, we use the Taylor expansion mentioned in the section Derivation above:

The local truncation error (LTE) introduced by the Euler method is given by the difference between these equations:

This result is valid if has a bounded third derivative.

This shows that for small, the local truncation error is approximately proportional to . This makes the Euler method less accurate (for small ) than other higher-order techniques such as Runge-Kutta methods and linear multistep methods, for which the local truncation error is proportial to a higher power of the step size.

A slightly different formulation for the local truncation error can be obtained by using the Lagrange form for the remainder term in Taylor's theorem. If has a continuous second derivative, then there exists a such that

In the above expressions for the error, the second derivative of the unknown exact solution can be replaced by an expression involving the right-hand side of the differential equation. Indeed, it follows from the equation that

Read more about this topic:  Euler Method

Famous quotes containing the words local and/or error:

    Surely there must be some way to find a husband or, for that matter, merely an escort, without sacrificing one’s privacy, self-respect, and interior decorating scheme. For example, men could be imported from the developing countries, many parts of which are suffering from a man excess, at least in relation to local food supply.
    Barbara Ehrenreich (b. 1941)

    It is a general popular error to suppose the loudest complainers for the public to be the most anxious for its welfare.
    Edmund Burke (1729–1797)