Euler Method - Local Truncation Error

Local Truncation Error

The local truncation error of the Euler method is error made in a single step. It is the difference between the numerical solution after one step, and the exact solution at time . The numerical solution is given by

For the exact solution, we use the Taylor expansion mentioned in the section Derivation above:

The local truncation error (LTE) introduced by the Euler method is given by the difference between these equations:

This result is valid if has a bounded third derivative.

This shows that for small, the local truncation error is approximately proportional to . This makes the Euler method less accurate (for small ) than other higher-order techniques such as Runge-Kutta methods and linear multistep methods, for which the local truncation error is proportial to a higher power of the step size.

A slightly different formulation for the local truncation error can be obtained by using the Lagrange form for the remainder term in Taylor's theorem. If has a continuous second derivative, then there exists a such that

In the above expressions for the error, the second derivative of the unknown exact solution can be replaced by an expression involving the right-hand side of the differential equation. Indeed, it follows from the equation that

Read more about this topic:  Euler Method

Famous quotes containing the words local and/or error:

    Wags try to invent new stories to tell about the legislature, and end by telling the old one about the senator who explained his unaccustomed possession of a large roll of bills by saying that someone pushed it over the transom while he slept. The expression “It came over the transom,” to explain any unusual good fortune, is part of local folklore.
    —For the State of Montana, U.S. public relief program (1935-1943)

    I have often been reproached with the aridity of my genius; a deficiency of imagination has been imputed to me as a crime; and the Pyrrhonism of my opinions has at all times rendered me notorious. Indeed, a strong relish for physical philosophy has, I fear, tinctured my mind with a very common error of this age—I mean the habit of referring occurrences, even the least susceptible of such reference, to the principles of that science.
    Edgar Allan Poe (1809–1849)