Euler Method - Rounding Errors

Rounding Errors

The discussion up to now has ignored the consequences of rounding error. In step n of the Euler method, the rounding error is roughly of the magnitude εyn where ε is the machine epsilon. Assuming that the rounding errors are all of approximately the same size, the combined rounding error in N steps is roughly Nεy0 if all errors points in the same direction. Since the number of steps is inversely proportional to the step size h, the total rounding error is proportional to ε / h. In reality, however, it is extremely unlikely that all rounding errors point in the same direction. If instead it is assumed that the rounding errors are independent rounding variables, then the total rounding error is proportional to .

Thus, for extremely small values of the step size, the truncation error will be small but the effect of rounding error may be big. Most of the effect of rounding error can be easily avoided if compensated summation is used in the formula for the Euler method.

Read more about this topic:  Euler Method

Famous quotes containing the words rounding and/or errors:

    I look for the new Teacher that shall follow so far those shining laws that he shall see them come full circle; shall see their rounding complete grace; shall see the world to be the mirror of the soul; shall see the identity of the law of gravitation with purity of the heart; and shall show that the Ought, that Duty, is one thing with Science, with Beauty, and with Joy.
    Ralph Waldo Emerson (1803–1882)

    I was duped ... by the Secretary of the treasury [Alexander Hamilton], and made a fool for forwarding his schemes, not then sufficiently understood by me; and of all the errors of my political life, this has occasioned the deepest regret.
    Thomas Jefferson (1743–1826)